
 

Page 1 of 15 

 

DRAFT SUBMITTED FOR 2ND EDITION OF THE 

ENCYCLOPEDIA OF GEOLOGY: SECTION 445 

 

 

Quantification of Mineral Resources 

Isobel Clark Geostokos Ecosse Ltd, Scotland 

  

 
The term “Mineral Resources” has changed significantly in meaning especially since the turn 

of the millennium. Until the mid 1990s, a resource simply implied the existence of a 

mineralisation which might become potentially economic. Nowadays, a Mineral Resource 

cannot be declared unless there is some justification for expecting the deposit to be profitably 

exploited as of the date of the study. The term “Reserve” is now applied to a resource which 

can be proven to be economic through the inclusion of all mining and economic parameters 

from access to rehabilitation. Since the economic climate is extremely variable, this 

discussion will concentrate on the “technical” quantification of mineral in situ. The 

quantification methods discussed here relate to those parameters for which an average (or 

total) is a suitable estimator. However, the techniques can also be adapted for categorical 

variables, such as lithology. Some variables from deposits such as oil and gas, which depend 

on flow characteristics and connectivity, are not suitable for these techniques. A reading list 

is included and many informative resources are available on the internet (cf. 

www.kriging.com). 
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Quantification of Mineral Resources 
Isobel Clark Geostokos Ecosse Ltd, Scotland 

 

Introduction 

 
The term “Mineral Resources” has changed significantly in meaning especially since the turn 

of the millennium. Until the mid 1990s, a resource simply implied the existence of a 

mineralisation which might become potentially economic. Nowadays, a Resource cannot be 

declared unless there is some justification for the deposit to be profitably exploited as of this 

date. The term “Reserve” is now applied to a resource which can be proven to be economic 

through the inclusion of all mining and economic parameters from access to rehabilitation. 

Since the economic climate is extremely variable, this discussion will concentrate on the 

“technical” quantification of mineral in situ.  

 

Mineral deposits are sampled in various ways – geophysical, magnetic mapping and physical 

sampling such as trenching, drilling, chipping and so on. Samples are collected and various 

measurements are made on these samples resulting, usually, in a numerical database which 

contains the location of the samples in additional to chemical assays, visual assessments and 

geological interpretations. The size of this database can vary from a few dozen measurements 

to tens of thousands of drillhole “core sections”. However, even the largest sampling campaign 

only measures a minute fraction of the potential mineralisation. For example, the largest 

diameter drill core currently in use is around 85mm in diameter. If a deposit was drilled on 

20m centres, this sampling represents less than 0.015 % of the potential mineralisation.  

 

 

 
Figure 1: example of sparse sampling in a large deposit 

 

 

The task of “quantification” is to estimate what potential mineral values might exist at 

unsampled locations based on what has been gathered from the existing sampling. Figure 1 
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illustrates a hypothetical coal deposit sampled at around 30,000 locations compared to the 

actual drilling which was carried out comprising 116 drillholes located at sporadic locations 

across an area of 80 square kilometres. This is a historical data set from a mine in the Karoo 

region of South Africa. It was first published for teaching purposes by Clark (2000) and can be 

downloaded from the web site http://www.kriging.com in a simple text format.  

 

To further simplify the discussion, consider any single unsampled location. How could the 

unknown value at this location be estimated? Before this question can be answered, some 

assumptions must be made about the deposit, the local mineralisation and the database.  

 

(1) Possibly the most basic assumption is that the samples have been measured precisely. 

That is, if the sampling process was repeated, the same samples taken again and 

analysed in the same way, the exact same measurements would appear in the database. 

This may seem an academic concern but actually has a major influence in the 

mathematics of some estimation methods which is not immediately obvious to users of 

software packages. The effect of this assumption may be studied using sampling theory 

such as that proposed by Gy and Pitard and is subsumed in the “nugget effect” of 

variography as discussed later in this section.  

 

(2) It is also necessary that the sampling measurements are accurate. That is, they 

adequately the actual values of the minerals at that location. Again, this may seem a 

fairly obvious requirement but there are many sampling methods which can introduce 

bias if not applied correctly. For example, using reverse circulation drilling in a coarse 

grained base metals deposit can lead to incomplete recovery of mineral in each section 

of the drillhole – leading to contamination down the hole or, less commonly, actual loss 

of mineral in the hole.  

 

(3) All software packages – and the mathematics of the estimation methods – depend on 

the prior geological interpretation of the deposit. It is essential that all major structural 

features and changes in mineralisation behaviour should be identified. In the parlance 

of modern geological software packages, homogeneous and physically continuous 

“domains” should be identified and boundaries put in place. This is generally referred 

to as “wire framing” but increasingly automated processes are being implemented to 

provide boundaries for mineralised areas.  

 

(4) All of the currently used mineral resource estimation packages operate on the 

assumption that there is some sort of relationship between the unsampled values and 

the values at sampled locations. Space here does not permit discussion of all the 

possible interpretations of this assumption, so only the most commonly used and widely 

practiced in mineral resource evaluation will be described in detail. 

 

 

Distance Weighted Estimation 

 
At this point in the discussion, it must be assumed that the geological interpretation is 

completed; that structural features have been identified; and that volumes of homogeneous 

mineralisation type have been domained. The remaining assumption is that the “unknown” 

value at the unsampled location is somehow related to the values at the sampled locations. 

There are several ways to interpret this assumption. The most common assumption is that the 

closest sampled values are most highly related to the unsampled value. Simply stated, the closer 
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the sample the stronger the relationship between that sample value and the unknown value. 

Since there are few simple measures of “closeness”. Common practice is to calculate the 

distance between the two locations and to assume that values at larger distance have a weaker 

relationship. That is, relationship is assumed to be an “inverse” function of distance.  

 

The obvious question, then, is “what function of distance?”. Any function which decreases 

with distance would be a valid inverse distance (ID) function. The most commonly used seem 

to be inverse distance squared (ID2) and inverse distance cubed (ID3) although straight inverse 

distance is still occasionally used and there seems to have been a recent fashion for inverse 

distance to the power of 5 (ID5). This last puts almost all of the weight on the closest sample 

and produces results similar to those termed “nearest neighbour” or “polygonal” estimators. 

 

Having chosen a suitable function, the calculation as illustrated in Table 1 follows these steps: 

 

(1) Calculate the distance between each sample and the location at which the value is to be 

estimated; 

 

(2) Calculate the relevant inverse function for that distance; 

 

(3) Standardise these values, one by one, so that they sum to 1. This is to ensure that 

distance units are irrelevant and that a sensible answer within the range of the data 

values is achieved; 

 

(4) Multiply the “weights” determined in (3) by the value measured for each sample; 

 

(5) Sum all the value in (4) to obtain the estimated value for the unsampled location. 

 

 

Table 1: calculation of Inverse Distance Squared (ID2) estimate 

Easting 
(metres)  

Northing 
(metres)  

Sample 
Value       

11739 13246 T     

   (1) (2) (3) (4) 

Easting 
(metres)  

Northing 
(metres)  

Sample 
Value   

 
distance 

to T 1/ distance^2 weight 

weight x 
Sample 
Value 

11739 13530 9.36 284 0.0000123983 0.4094 3.832 

12073 13489 5.2 413 0.0000058615 0.1935 1.006 

11262 13246 8.74 477 0.0000043950 0.1451 1.268 

11854 12643 4.4 614 0.0000026537 0.0876 0.386 

11132 13097 9.78 625 0.0000025598 0.0845 0.827 

12371 13126 0.8 643 0.0000024165 0.0798 0.064 
       

   

Sum of 
column: 0.0000302849 1.0000 7.383 

 

 

These results are also illustrated in Figure 2. Using a different ID function will produce a 

different estimator for the unknown value. Higher powers of distance will weight closer 

samples more, lower powers will tend to spread the weight out amongst the samples.  
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Figure 2: estimation of an unknown value using Inverse Distance squared (ID2) 

 

 

In this example, 6 samples have been used to provide an estimator. In implementation – for 

example, when developing macros or software – the operator must supply a maximum number 

of samples which can be included in the estimation. Also, possibly, the minimum number. 

Intuitively, more samples would seem to provide a “better” estimator. However, including 

more samples shifts weight away from the closest samples. Intuitively, there should be a 

balance between including as many samples as possible and not including too many. 

 

Most software packages will require a “search” radius – the maximum distance at which the 

relationship is assumed to exist. Or, at least, the maximum distance at which to include samples 

in the estimation is needed. This is generally determined by empirical assessment of the 

geological continuity.  

 

Some deposits have preferential directions for continuity of mineral values. Most software 

packages will allow the introduction of “anisotropy” direction and factors. It should be borne 

in mind that changing the search radius with direction will not necessarily change how the 

samples are weighted in different directions. These may require two different specifications in 

a software package.  

 

One major question remains. How can the choice of appropriate distance function be verified? 

Which combination of the above parameters is, in some sense, the “best” choice? At the very 

least, is there some more objective method available to make these choices? 

 

 

Variography 
 

Distance Weighting estimation methods are based on the assumption that the relationship 

between values measured at different locations depends on the distance and, possibly, on the 

relative orientation of those locations.  

 

In the early 1950s, academics and other professionals on the gold mines began to study the 

nature of these distance/direction relationships. Rather than choosing an arbitrary form for the 
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relationship they set out to derive the form of the relationship by theoretical or empirical data-

driven approaches.  

 

For example, in 1951 Professor de Wijs on sabbatical in South Africa from the Netherlands 

used mathematical theory to speculate as to how the relationship between gold grades would 

change with distance based on the assumption that gold grades followed a lognormal 

distribution. In his work, “relationship” is defined as “successive difference in grade” (Figure 

3).  

 

 
Figure 3: theoretical development of likely successive difference, from de Wijs 1951 

 

Following this lead, a team at Anglovaal Gold including Danie Krige produced tables of 

covariances between blocks of mined out ground using very large numbers of closely spaced 

sampling data (Figure 4). These covariances were then used in a standard least squares 

regression system to predict the likely grade of an as-yet unmined block of ground. This 

approach was named a “weighted moving average technique” and subsequently became known 

as “Simple Kriging”.  

 

 

 

 
Figure 4: Krige’s moving average template for multiple regression estimates 
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In the mid 1950s, a Doctoral student at the School of Mines in Nancy, France, named Georges 

Matheron studied these and other distance related approach on a more mathematical basis. His 

work can be expressed in terms of both covariances and “differences in value”. In ideal 

circumstances, the two definitions of relationship will provide equivalent results. However, the 

latter requires rather fewer and less rigorous assumptions and tends to be the more commonly 

used nowadays.  

 

In classical statistics, the covariance is used to measure the one-to-one relationship between 

two variables. It assumes that the two variables are each Normally distributed or – at least – 

come from distributions which are symmetrical around their average values. It is also necessary 

to know – or estimate – the overall average value for the study area (or volume) because this 

value is used in the calculation of the covariance parameters. In the present context, both 

“variables” are measurement of the same quantity so that the overall average for both will be 

the same value. As a consequence of this requirement, this approach to estimation is also known 

as “Kriging with known mean”. Some practitioners take a further step and standardise the 

covariance by the variance of the sample values, producing a correlation which can vary 

between +1 (perfect straight-line relationship with positive slope) and -1 (perfect straight-line 

relationship with negative slope). Zero covariance or correlation denotes no relationship at all 

between the two values. Calculation of the correlation values also requires that the variance of 

the measured values to be constant across the study area and to be known or well estimated 

from the existing data. This is sometimes referred to as “stationarity”.  

 

As mentioned previously, de Wijs suggested that the difference between values might provide 

a useful measure of relationship. In this case, the quantity of interest is simply one measured 

value minus the other. This introduces the interesting question of whether the calculation 

should involve the “other” minus the “one”. Obviously, either will provide the same result but 

with the opposite sign. There are several possible solutions to this question, the (perhaps) 

simplest being to square the difference so that both yield the same result. This is also very 

tractable for mathematical purposes. It is also intuitively appealing and has the advantage of 

not requiring the knowledge of overall average or variance of the measured values. An added 

advantage is that the data do not have to follow a Normal (Gaussian) distribution. The approach 

is more stable if the difference in value follow a Normal distribution but this is not absolutely 

necessary in practice. Matheron called this the “Intrinsic Hypothesis” alternatively known as 

“second order stationarity”.  

 

It should be emphasised that if the measured values are “stationary” the two approaches yield 

identical results. If only second order stationarity is realistic, the “successive difference” 

approach has greater validity.  

 

To recap, it is assumed that the relationship between values measured at two locations depends 

on the distance between them and, possibly, their relative orientation. For a specified distance 

and direction, it is only necessary to find pairs of measured values which are that distance apart 

and (if necessary) in the same relative orientation to quantify what sort of relationship exists. 

In practice, a tolerance is allowed so that pairs are found at more or less the same distance and 

more or less the same direction. When the pairs have been identified, the difference in value is 

calculated for each pair and squared to obtain a positive figure. The squared values are then 

averaged to provide a “root mean square” or variance for the difference in value at that distance 

in that direction. This process is repeated for as many distances and directions as are needed or 

available.  
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Matheron suggested that the most appropriate way to display the results would be in the form 

of a graph showing these calculated variances versus the distance between the measured values. 

Different symbols may be used to represent different directions, or directional graphs can be 

shown side by side for comparison. However, Matheron made one modification to this 

suggestion so that the graph plotted became one-half of the variance versus the distance. This 

graph is known as the semi-variogram although recently it is more commonly just called a 

variogram. The most plausible explanation for the use of the semi-variance is that it is directly 

related to the covariance for the same set of pairs of data: 

 

Covariance = statistical variance of sampled values – semi-variance 

 

If the assumption of a distance based relationship is appropriate, the variance of differences for 

shorter distances should be less than the variance at greater differences. This should provide a 

graph which rises as distance increases. In the ideal case, the graph will level off at a certain 

distance indicating that there is no longer a relationship between values further apart. This 

distance is usually referred to as a “range of influence” and is generally taken as the maximum 

search distance for estimation purposes. The height at which the graph levels out is known as 

a “sill” and should be interpreted as an estimate for the statistical variance of the measured 

sample values. This quantity may also be estimated using the classical statistical approach. 

However, it should be borne in mind that the classical estimation approach assumes that the 

measured values are not related to one another. Thus, the sill and the statistical variance of 

values should be treated as two different estimates of the same overall variance in measured 

value.  

 

In most practical cases, it is not possible to provide “points” on the semi-variogram graph for 

every possible distance and direction which might occur during the estimation process. This is 

especially true for regularly spaced (gridded) data where only certain distances are available 

between samples. The graph produced from the data – sometimes known as an experimental 

semi-variogram – may contain a limited number of discrete points which will be scattered 

either side of a general shape for the actual “distance function” which is needed for the 

estimation process. Common practice is to “fit” a mathematical function to this graph to 

approximate the appropriate distance function for the data set under analysis (Figure 5). 

 

 

 
Figure 5: example of calculated semi-variogram (symbols) and fitted model (solid line) 
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This is known as a model semi-variogram. Studies have been carried out to find general 

functions which could be applied as models. However, most geological software packages use 

a small number of proven model types which are mathematically tractable and stable in 

practice.  

 

It is common, when fitting a semi-variogram model, to find that the model tends to intercept 

the semi-variance axis rather than falling to zero variance at zero distance. That is, the 

difference between two sample values very close together is not zero no matter how close the 

samples are. For example, if a drill core was cut in half and both halves analysed, the 

measurements on each half would differ. These differences may comprise sampling errors, 

laboratory variation and/or the unpredictable nature of the mineralisation itself. The magnitude 

of the semi-variance at (almost) zero distance is called the “nugget effect” or sometimes the 

“nugget variance”. Software packages differ according to whether this nugget effect is used as 

the semi-variance at zero distance or whether the model is forced to fall to zero at zero distance.  

 

One of the reasons for using the semi-variogram approach rather than the covariance 

calculation is that the nugget effect is plainly visible in the semi-variogram but not obvious in 

the covariance graph. 

 

If the distance relationship changes with direction, this is referred to as “anisotropy” and 

separate model semi-variograms should be fitted for the direction with maximum range of 

influence and that with minimum range of influence. If working with 3 dimensional data, an 

intermediate axis will also be required. Most software packages assume that anisotropy follows 

an elliptical (ellipsoidal) behaviour with the axes being orthogonal to one another. It is usual 

to model the same nugget effect and the same final sill for all directions.  

 

Deviations from the ideal behaviour of semi-variograms may be diagnostic of violations of the 

basic assumptions of distance relationships. For example, if the final sill varies with direction, 

this may be indicative of structural geological features which have not been included in the 

domaining of the deposit. Taking pairs across a fault line or transgressing across an 

oxidation/fresh rock boundary are simple examples of non-homogeneity in geology.  

 

Alternatively, such behaviour can occur if data values are very highly skewed and/or the data 

set contains extreme “erratic” values. This can also produce semi-variogram graphs which look 

closer to a shotgun scatter than a visible distance function. This can easily be verified by 

transforming the data values to a more stable behaviour such as a Normal (Gaussian) form. 

Other transforms, such as an Indicator (0,1) or a rank order transform can be useful in 

determining what shape is appropriate in some cases. Another common practice, is to remove 

extreme values from the data set (top cutting) or replacing them by some more acceptable value 

(capping).  

 

If there is no actual change in relationship with distance the semi-variogram graphs will simply 

consist of points varying around a constant flat line. In this case, distance weighting is 

obviously inappropriate as an estimation technique and alternative methods should be sought.  

In summary, the justification for a distance weighted estimator is emphasised and quantified 

by calculating, interpreting and modelling semi-variograms for each geological zone, each 

mineralisation type and for each measured parameter. It is common practice to use the 

“variography” to determine search radii and directional factors and to revert to inverse distance 

type estimation methods to quantify or map mineral resources. Matheron undertook to derive 

a mathematical approach which would use the semi-variogram models to provide an objective 

optimal estimation method.  
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Kriging 

 
Many practitioners in the evaluation of mineral resources carry out a variography exercise to 

quantify directional controls and ranges of influence for each mineral and each zone. However, 

a significant proportion of those practitioners then revert to using distance weighting estimators 

using the arbitrary Inverse Distance functions to determine the weighting factors.  

 

Matheron, Krige and many other authors, however, took the further step and used the 

established model relationships to produce objectively optimal estimation methods. In 

geological and mining applications, practitioners follow the estimation techniques developed 

from Matheron’s early work. Mathematical background is extensively published elsewhere and 

only a brief discussion will be presented here.  

 

The objective, as stated previously, is to estimate the likely mineral values at locations which 

have not yet been sampled. The most commonly used estimation method is one in which the 

neighbouring samples are combined in a weighted average where the weights are chosen 

according to the relationship between the known measured value and the expected value at the 

unsampled location. This relationship is assumed to be some function of the distance and 

(possibly) the relative orientation of the locations of sampled and unsampled locations. In 

traditional Inverse Distance type weighting, the relationship is assumed to be some simple 

inverse function of distance. This approach can be enhanced somewhat by a variography study 

as discussed in the previous section.  

 

The term “estimated value” carries with it the implication that this is not the “actual” value 

which would be measured if a sample was to be taken at the currently unsampled location. That 

is, there is a difference between the estimated value and the actual value. This difference may 

also be termed the “error of estimation”. Krige developed a multiple regression estimator based 

on classical Least Squares techniques to determine the weights which would minimise the 

estimation errors. Covariances were calculated using very large data sets from mined out areas 

in the gold reefs. For this approach, the average value over the local area must also be known 

or, at very least, well estimated. This approach has come to be known as “Simple Kriging” or 

“Kriging with known mean”. Matheron developed a similar system modified slightly by the 

introduction of an additional factor which ensures that estimates are unbiassed without prior 

knowledge of the overall average of the deposit. This additional factor is known as a 

“lagrangian multiplier”. This approach is generally referred to as “Ordinary Kriging” or 

“kriging with unknown mean”.  

 

In both of these cases – and other similar techniques – development of the mathematical theory 

reveals that the magnitude of the error incurred in an estimation does not depend only on the 

relationship between each sample value and the unsampled value. The magnitude of the 

estimation error also depends on the relationships between the values at the sampled locations.  

 

That is, the magnitude of the estimation error depends on:  

 

(1) how strongly the sampled values are related to the unknown unsampled value;  

 

(2) how strongly the sampled are related to one another;  

 

(3) what weights are allocated to each sampled value.  
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Figure 6: relationships included in the kriging system 

 

 

To minimise the magnitude of the errors, the weights are chosen such that the sample/unknown 

relationships balance against the sample/sample relationships (Figure 6). The “lagrangian 

multipler” used by Matheron allows for the fact that the two factors are unlikely to balance 

exactly and reflects, to some extent, the efficiency of the sampling layout.  

 

In practice, the Kriging methods reduce to a set of simultaneous equations with a table of the 

sample/sample relationships – semi-variogram values or covariances for the relevant distance 

and direction – as the left hand side of the equations. The right hand side of each row in the 

table is the relationship (semi-variogram or covariance) between the relevant sample and the 

unsampled value. All of these relationships being calculated using the semi-variogram (or 

covariance) model for the corresponding distance and direction between the locations of 

interest.  

 

 
Figure 7: comparison of weights from inverse distance squared 

 and those from ordinary kriging 
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In Ordinary Kriging, an additional row and column is added to the left hand table for the 

lagrangian multiplier to ensure a locally unbiassed estimator. In Simple Kriging, the resulting 

estimator is modified by the overall regional mean to provide an unbiassed estimator. The 

simultaneous equations may be solved to provide the weighting factors which minimise the 

magnitude of the difference between the estimated value and the (unknown) actual value at the 

unsampled location. These weights will differ from a simple ID estimate because the kriging 

system includes the inter-sample relationships (Figure 7). 

 

The magnitude of the estimation error is sometimes referred to as the “estimation variance”. 

The square root of this quantity represents the standard deviation of the estimation error, often 

abbreviated to “standard error” which may be seen as a measure of reliability of the estimated 

value.  

 

It is generally assumed that the error of estimation will follow a Normal (Gaussian) distribution 

so that classical statistical methods can be applied for confidence levels. This assumption and 

the general validity of the Kriging method can be verified by a cross validation exercise. This 

is a diagnostic study in which the estimates and their theoretical errors are compared with actual 

values where available. The process is as follows: 

 

(1) a sampled value is removed from the data set and so becomes an “unknown” value; 

 

(2) an estimate for the value at that location is calculated using the neighbouring sample 

providing an estimator and associated theoretical standard error; 

 

(3) the actual estimation error is calculated by subtracting the actual value from the 

estimated value (or vice versa); 

 

(4) a standardised error is calculated using the ratio of actual error to theoretical standard 

error. 

 

(5) The sampled value is returned to the data set and another sample removed from the 

data set. This process is repeated for each sampled value in turn. 

 

If all analysis has been carried out appropriately – variography and kriging processes – the 

standardised errors should follow a distribution with average zero and standard deviation of 

1.0. In ideal circumstances, this distribution will be Normal (Gaussian). In practice, the average 

error statistic should be approximately zero and the standard deviation approximately 1. 

Classical statistical tests cannot be used to assess significant differences from the N[0,1] ideal 

since the estimation errors are highly inter-correlated. However, the exercise does produce 

results which allow direct comparisons between estimated and actual values and which can be 

used to produce histograms or probability plots to visually assess the distribution of the actual 

estimation errors.  

 

Cross validation also provides a simple technique for the identification of anomalies, outliers, 

non-homogeneities and other departures from ideal behaviour in individual values and overall 

characteristics. In particular, serious departures from Normality and/or indications for top 

cutting or capping values can be verified by a cross validation exercises.  

 

It is worth noting that cross validation provides a fairly limited verification when using drilling 

data since only the very closed spaced sampling down the hole will be included. In this case, 
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some practitioners prefer to remove a complete drillhole at stage (1) of cross validation to test 

inter-drillhole or longer range relationships and estimators.  

 

Although most geological software packages offer data transformation for the variography 

analysis, few offer the capability to Krige on transforms and back-transform the results. If the 

data follow a lognormal distribution, Lognormal Kriging or a Lognormal shortcut may be 

appropriate. If the data is severely non-Normal but not lognormal, a Multi-Indicator 

transformation may be the most appropriate option. Cross validation has been used to compare 

Kriging methods since the 1970s.  

 

It has been said previously that authors other than Krige and Matheron were producing similar 

estimation methods in the 1950s and 1960s. However, Krige and Matheron focussed their work 

not only on the production of contour maps but also on the estimation of values into mining 

blocks. In fact, Krige’s early works were completely oriented to block estimation. Matheron 

developed his methodology on “point” sampling but extended his theory into the estimation of 

volumes of ground. Although the mathematical background is highly complex, the practical 

applications of block kriging are relatively straightforward. Without going into the 

mathematics, the intuitive extension of kriging to block estimation is simple: 

 

(1) The left hand table of sample/sample relationships remains unchanged; 

 

(2) The right hand column remains as the sample/unknown relationship but demands that 

the relationship between a sample and a block of ground be quantified; 

 

(3) An additional component to the estimation variances comes into play to allow for the 

size, shape and orientation of the block. 

 

In practice, the block or volume to be estimated is considered to be an aggregate of many 

sample-sized units. That is, a block is equated to a large number of individual samples. In 

Matheron’s theoretical approach, the number of samples is practically infinite. In practice, a 

finite and relatively small number of sample “points” is used. This is sometimes referred to as 

“discretisation”. The relationship between a single sample and the average value of a block is 

found by pairing the single sample with each point inside the block in turn and averaging all 

the resulting semi-variogram values. The component (3) above is found by pairing every point 

in the block with every point in the block, calculating the semi-variogram value for each pairing 

and then averaging all of these relationships.  

 

It should be fairly obvious that the most important parameter in this process is simply: how 

many samples adequately represent a given volume of ground? Most software packages 

operate with a default “discretisation” which is generally a very small number – for example, 

3 by 3 by 3 or 5 by 5 by 1. This question has been discussed in the literature since the mid 

1970s (cf. Clark 1976)  

 

The weights for each sample will differ depending on the size, shape and relative orientation 

of the block (Figure 8). This approach, sometimes known as “direct kriging”, produces 

estimates for block values which should be more reliable than any Inverse Distance weighted 

average at the block centre. 
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Figure 8: comparison of weights from ordinary kriging when estimated a new borehole and 

the average grade over a block 

 

 

Summary 

 

In summary, variography provides a method of quantifying the geological continuity of 

mineral values within a given domain for a given measured variable. The efficiency of 

Inverse Distance style weighting methods can be improved significantly if combined with 

variography. Kriging uses the geological model as quantified in the variography to produce 

optimal estimates for values at unsampled locations and/or blocks of ground with the added 

advantage of an objective measure of the confidence which might be placed on these 

estimates.  
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