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The term “Mineral Resources” has changed significantly in meaning especially since the turn
of the millennium. Until the mid 1990s, a resource simply i ed the existence of a
mineralisation which might become potentially economic. Nowadays, a Mineral Resource
cannot be declared unless there is some justification fi ing the deposit to be profitably
exploited as of the date of the study. The term “Re i plied to a resource which
can be proven to be economic through the inclusi d economic parameters

from access to rehabilitation. Since the econ variable, this
discussion will concentrate on the “technica situ. The
quantification methods discussed here relate to average (or
total) is a suitable estimator. However, the techni ategorical
variables, such as lithology. Som i ts such as oil and gas, which depend

on flow characteristics and connec i r these techniques. A reading list
is included and many informative re e internet (cf.
www.kriging.com).
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Quantification of Mineral Resources
Isobel Clark Geostokos Ecosse Ltd, Scotland

Introduction

The term “Mineral Resources” has changed significantly in meaning especially since the turn
of the millennium. Until the mid 1990s, a resource simply implied the existence of a
mineralisation which might become potentially economic. Nowadays, a Resource cannot be
declared unless there is some justification for the deposit to be profitably exploited as of this
date. The term “Reserve” is now applied to a resource which can be proven to be economic
through the inclusion of all mining and economic parameters from access to rehabilitation.
Since the economic climate is extremely variable, this discussion will concentrate on the
“technical” quantification of mineral in situ.

Mineral deposits are sampled in various ways — g
sampling such as trenching, drilling, chipping
measurements are made on these samples
contains the location of the samples in addi
geological interpretations. The size of this data
to tens of thousands of drillhole “core sections”.
only measures a minute fractio the potential eralisation. For example, the largest
diameter drill core currently in us iameter. If a deposit was drilled on
20m centres, this sampling represents less potential mineralisation.

netic mapping and physical
are collected and various
erical database which
al assessments and
from a few n measurements
even the largest sampling campaign

so on. Samp
ting, usually, in a
al to chemical assays,
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Figure 1: example of sparse sampling in a large deposit

The task of “quantification” is to estimate what potential mineral values might exist at
unsampled locations based on what has been gathered from the existing sampling. Figure 1

Page 2 of 15



illustrates a hypothetical coal deposit sampled at around 30,000 locations compared to the
actual drilling which was carried out comprising 116 drillholes located at sporadic locations
across an area of 80 square kilometres. This is a historical data set from a mine in the Karoo
region of South Africa. It was first published for teaching purposes by Clark (2000) and can be
downloaded from the web site http://www.kriging.com in a simple text format.

To further simplify the discussion, consider any single unsampled location. How could the
unknown value at this location be estimated? Before this question can be answered, some
assumptions must be made about the deposit, the local mineralisation and the database.

(1) Possibly the most basic assumption is that the samples have been measured precisely.
That is, if the sampling process was repeated, the e samples taken again and
analysed in the same way, the exact same measure s would appear in the database.
This may seem an academic concern but ac has a major influence in the
mathematics of some estimation methods whi immediately obvious to users of

software packages. The effect of this assu udied using sampling theory

such as that proposed by Gy and Pitar i

grained base metals deposit ¢
of the drillhole — leading to co
of mineral in the hole.

behaviour should be identified. In the parlance

es, homogeneous and physically continuous

undaries put in place. This is generally referred

increasingly automated processes are being implemented to
ralised areas.

ges in mineralisatio
ical software pac

tly used mineral resource estimation packages operate on the
here is some sort of relationship between the unsampled values and

tions of this assumption, so only the most commonly used and widely
al resource evaluation will be described in detail.

Distance Weighted Estimation

At this point in the discussion, it must be assumed that the geological interpretation is
completed; that structural features have been identified; and that volumes of homogeneous
mineralisation type have been domained. The remaining assumption is that the “unknown”
value at the unsampled location is somehow related to the values at the sampled locations.
There are several ways to interpret this assumption. The most common assumption is that the
closest sampled values are most highly related to the unsampled value. Simply stated, the closer
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the sample the stronger the relationship between that sample value and the unknown value.
Since there are few simple measures of “closeness”. Common practice is to calculate the
distance between the two locations and to assume that values at larger distance have a weaker
relationship. That is, relationship is assumed to be an “inverse” function of distance.

The obvious question, then, is “what function of distance?”. Any function which decreases
with distance would be a valid inverse distance (ID) function. The most commonly used seem
to be inverse distance squared (ID2) and inverse distance cubed (ID3) although straight inverse
distance is still occasionally used and there seems to have been a recent fashion for inverse
distance to the power of 5 (ID5). This last puts almost all of the weight on the closest sample
and produces results similar to those termed “nearest neighbour” or “polygonal” estimators.

Having chosen a suitable function, the calculation as illustr in Table 1 follows these steps:

(1) Calculate the distance between each sample tion at which the value is to be
estimated;

(2) Calculate the relevant inverse functi r that distance;

distance units are irreleva
values is achieved;

(@) (3) (4)

weight x
distance Sample
toT 1/ distance”2 weight Value

284 0.0000123983 | 0.4094 3.832
413 0.0000058615 | 0.1935 1.006
477 0.0000043950 | 0.1451 1.268

11854 12643 4.4 614 0.0000026537 | 0.0876 0.386

11132 13097 9.78 625 0.0000025598 | 0.0845 0.827

12371 13126 0.8 643 0.0000024165 | 0.0798 0.064
Sum of

column: | 0.0000302849 | 1.0000 7.383

These results are also illustrated in Figure 2. Using a different ID function will produce a
different estimator for the unknown value. Higher powers of distance will weight closer
samples more, lower powers will tend to spread the weight out amongst the samples.
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Figure 2: estimation of an unknown val

Intuitively, more samples would see
more samples shifts weight away

r” estimator. However, including
Intultlvely, there should be a

continuity of mineral values. Most software
! ion of “anisotropy” direction and factors. It should be borne
in mi i adius with direction will not necessarily change how the
tions. These may require two different specifications in

One major question remains. How can the choice of appropriate distance function be verified?
Which combination of the above parameters is, in some sense, the “best” choice? At the very
least, is there some more objective method available to make these choices?

Variography

Distance Weighting estimation methods are based on the assumption that the relationship
between values measured at different locations depends on the distance and, possibly, on the
relative orientation of those locations.

In the early 1950s, academics and other professionals on the gold mines began to study the
nature of these distance/direction relationships. Rather than choosing an arbitrary form for the
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relationship they set out to derive the form of the relationship by theoretical or empirical data-
driven approaches.

For example, in 1951 Professor de Wijs on sabbatical in South Africa from the Netherlands
used mathematical theory to speculate as to how the relationship between gold grades would
change with distance based on the assumption that gold grades followed a lognormal
distribution. In his work, “relationship” is defined as “successive difference in grade” (Figure
3).
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Figure 4: Krige’s moving average template for multiple regression estimates



In the mid 1950s, a Doctoral student at the School of Mines in Nancy, France, named Georges
Matheron studied these and other distance related approach on a more mathematical basis. His
work can be expressed in terms of both covariances and “differences in value”. In ideal
circumstances, the two definitions of relationship will provide equivalent results. However, the
latter requires rather fewer and less rigorous assumptions and tends to be the more commonly
used nowadays.

In classical statistics, the covariance is used to measure the one-to-one relationship between
two variables. It assumes that the two variables are each Normally distributed or — at least —
come from distributions which are symmetrical around their average values. It is also necessary
to know — or estimate — the overall average value for the study area (or volume) because this
value is used in the calculation of the covariance parameters. In the present context, both
“variables” are measurement of the same quantity so that the overall average for both will be
the same value. As a consequence of this requirement, thi roach to estimation is also known
as “Kriging with known mean”. Some practitioner. rther step and standardise the

covariance by the variance of the sample value i correlation which can vary
between +1 (perfect straight-line relationship wi d -1 (perfect straight-line
relationship with negative slope). Zero cov s no relationship at all
between the two values. Calculation of the c that the variance of

As mentioned previously, de Wijs : ifference between values might provide
a useful measure of relationship. In thi i interest is simply one measured
value minus the other. This introdu St of whether the calculation
should involve the ¢ other minus the “ I provide the same result but
w1th the oppos1te Si s to this question, the (perhaps)
at both yield the same result. This is also very
o intuitively appealing and has the advantage of
ige or variance of the measured values. An added
ormal (Gaussian) distribution. The approach
a Normal distribution but this is not absolutely
called thls the “Intrinsic Hypothesis™ alternatively known as

To recap, it is assumed that the relationship between values measured at two locations depends
on the distance between them and, possibly, their relative orientation. For a specified distance
and direction, it is only necessary to find pairs of measured values which are that distance apart
and (if necessary) in the same relative orientation to quantify what sort of relationship exists.
In practice, a tolerance is allowed so that pairs are found at more or less the same distance and
more or less the same direction. When the pairs have been identified, the difference in value is
calculated for each pair and squared to obtain a positive figure. The squared values are then
averaged to provide a “root mean square” or variance for the difference in value at that distance
in that direction. This process is repeated for as many distances and directions as are needed or
available.
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Matheron suggested that the most appropriate way to display the results would be in the form
of a graph showing these calculated variances versus the distance between the measured values.
Different symbols may be used to represent different directions, or directional graphs can be
shown side by side for comparison. However, Matheron made one modification to this
suggestion so that the graph plotted became one-half of the variance versus the distance. This
graph is known as the semi-variogram although recently it is more commonly just called a
variogram. The most plausible explanation for the use of the semi-variance is that it is directly
related to the covariance for the same set of pairs of data:

Covariance = statistical variance of sampled values — semi-variance

e variance of differences for
erences. This should provide a

If the assumption of a distance based relationship is appropriat
shorter distances should be less than the variance at greater
graph which rises as distance increases. In the ideal cas e graph will level off at a certain
distance indicating that there is no longer a relatio een values further apart. This
distance is usually referred to as a “range of influe i rally taken as the maximum
i h levels out is known as
a “sill” and should be interpreted as an esti 1ance of the measured

values should be treated as two di
value.

between samples 1 the data — sometimes known as an experimental
imber of discrete points which will be scattered
“distance function” which is needed for the
it” a mathematical function to this graph to
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Figure 5: example of calculated semi-variogram (symbols) and fitted model (solid line)
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This is known as a model semi-variogram. Studies have been carried out to find general
functions which could be applied as models. However, most geological software packages use
a small number of proven model types which are mathematically tractable and stable in
practice.

It is common, when fitting a semi-variogram model, to find that the model tends to intercept
the semi-variance axis rather than falling to zero variance at zero distance. That is, the
difference between two sample values very close together is not zero no matter how close the
samples are. For example, if a drill core was cut in half and both halves analysed, the
measurements on each half would differ. These differences may comprise sampling errors,
laboratory variation and/or the unpredictable nature of the mineralisation itself. The magnitude
of the semi-variance at (almost) zero distance is called the “nugget effect” or sometimes the
“nugget variance”. Software packages differ according to whether this nugget effect is used as
the semi-variance at zero distance or whether the model 1 ced to fall to zero at zero distance.

If the distance relationship changes with dire
separate model semi-variograms should be fitte imum range of

working with 3 dimensional data, an

or example, if the final sill varies with direction,
al features which have not been included in the
cross a fault line or transgressing across an
les of non-homogeneity in geology.

this may be indic
domaining of the

occur if data values are very highly skewed and/or the data
. This can also produce semi-variogram graphs which look

s an Indicator (0,1) or a rank order transform can be useful in
is appropriate in some cases. Another common practice, is to remove
ata set (top cutting) or replacing them by some more acceptable value

determining wha
extreme values fro

(capping).

If there is no actual change in relationship with distance the semi-variogram graphs will simply
consist of points varying around a constant flat line. In this case, distance weighting is
obviously inappropriate as an estimation technique and alternative methods should be sought.
In summary, the justification for a distance weighted estimator is emphasised and quantified
by calculating, interpreting and modelling semi-variograms for each geological zone, each
mineralisation type and for each measured parameter. It is common practice to use the
“variography” to determine search radii and directional factors and to revert to inverse distance
type estimation methods to quantify or map mineral resources. Matheron undertook to derive
a mathematical approach which would use the semi-variogram models to provide an objective
optimal estimation method.
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Kriging

Many practitioners in the evaluation of mineral resources carry out a variography exercise to
quantify directional controls and ranges of influence for each mineral and each zone. However,
a significant proportion of those practitioners then revert to using distance weighting estimators
using the arbitrary Inverse Distance functions to determine the weighting factors.

Matheron, Krige and many other authors, however, took the further step and used the
established model relationships to produce objectively optimal estimation methods. In
geological and mining applications, practitioners follow the estimation techniques developed
from Matheron’s early work. Mathematical background is extensively published elsewhere and
only a brief discussion will be presented here.

The objective, as stated previously, is to estimate the li ineral values at locations which

neighbouring samples are combined in a weig re the weights are chosen
according to the relationship between the know. the expected value at the
unsampled location. This relationship is a of the distance and
(possibly) the relative orientation of the lo pled locations. In

traditional Inverse Distance type weighting, th i i e some simple
inverse function of distance. This approach can be riography study

The term “estimated value” carries with i i icati t this is not the “actual” value
which would be measured if a sample i tly unsampled location. That

also be termed the estimation”. | developed a multiple regression estimator based
on classical Lea etermine the weights which would minimise the
estimation errors. d using very large data sets from mined out areas

age value over the local area must also be known
as come to be known as “Simple Kriging” or
eloped a similar system modified slightly by the
or which ensures that estimates are unbiassed without prior

In both of these cases — and other similar techniques — development of the mathematical theory

reveals that the mag e of the error incurred in an estimation does not depend only on the
relationship between each sample value and the unsampled value. The magnitude of the
estimation error also depends on the relationships between the values at the sampled locations.
That is, the magnitude of the estimation error depends on:

(1) how strongly the sampled values are related to the unknown unsampled value;

(2) how strongly the sampled are related to one another;

(3) what weights are allocated to each sampled value.
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To minimise the magnitude of the errors, the wei sen such that t mple/unknown
relationships balance against the nships (Figure 6). The “lagrangian
multipler” used by Matheron allo two factors are unlikely to balance

In practice, the Kriging methods redu quations with a table of the
sample/sample relationships — semi-variogran ariances for the relevant distance
and direction — a quations. The right hand side of each row in the
table is the relat variogram or covariance) between the relevant sample and the

unsampled value. being calculated using the semi-variogram (or
covarianc odel fo i ance and direction between the locations of
intere
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Figure 7: comparison of weights from inverse distance squared
and those from ordinary kriging
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In Ordinary Kriging, an additional row and column is added to the left hand table for the
lagrangian multiplier to ensure a locally unbiassed estimator. In Simple Kriging, the resulting
estimator is modified by the overall regional mean to provide an unbiassed estimator. The
simultaneous equations may be solved to provide the weighting factors which minimise the
magnitude of the difference between the estimated value and the (unknown) actual value at the
unsampled location. These weights will differ from a simple ID estimate because the kriging
system includes the inter-sample relationships (Figure 7).

The magnitude of the estimation error is sometimes referred to as the “estimation variance”.
The square root of this quantity represents the standard deviation of the estimation error, often
abbreviated to “standard error” which may be seen as a measure of reliability of the estimated
value.

It is generally assumed that the error of estimation will fo
so that classical statistical methods can be applied fo

a Normal (Gaussian) distribution
ce levels. This assumption and

(2) an estimate for the value at tha ated using the neighbouring sample
providing an estimator and ia ndard error;

(3) the actual estimation error is cal
estimated value (or vice versa);

a set and another sample removed from the
sampled value in turn.

appropriately — variography and kriging processes — the
a distribution with average zero and standard deviation of
es, this distribution will be Normal (Gaussian). In practice, the average

approximately zero and the standard deviation approximately 1.

results which allow direct comparisons between estimated and actual values and which can be
used to produce histograms or probability plots to visually assess the distribution of the actual
estimation errors.

Cross validation also provides a simple technique for the identification of anomalies, outliers,
non-homogeneities and other departures from ideal behaviour in individual values and overall
characteristics. In particular, serious departures from Normality and/or indications for top
cutting or capping values can be verified by a cross validation exercises.

It is worth noting that cross validation provides a fairly limited verification when using drilling
data since only the very closed spaced sampling down the hole will be included. In this case,
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some practitioners prefer to remove a complete drillhole at stage (1) of cross validation to test
inter-drillhole or longer range relationships and estimators.

Although most geological software packages offer data transformation for the variography
analysis, few offer the capability to Krige on transforms and back-transform the results. If the
data follow a lognormal distribution, Lognormal Kriging or a Lognormal shortcut may be
appropriate. If the data is severely non-Normal but not lognormal, a Multi-Indicator
transformation may be the most appropriate option. Cross validation has been used to compare
Kriging methods since the 1970s.

It has been said previously that authors other than Krige and Matheron were producing similar
estimation methods in the 1950s and 1960s. However, Krige a atheron focussed their work
not only on the production of contour maps but also on the estimation of values into mining
blocks. In fact, Krige’s early works were completely oriented to block estimation. Matheron
developed his methodology on “point” sampling but is theory into the estimation of
volumes of ground. Although the mathematical b ighly complex, the practical
ithout going into the
imple:

nown relationship but demands that
ound be quantified;

ated is considered to be an aggregate of many
ted to a large number of individual samples. In

e sample and the average value of a block is
le with each point inside the block in turn and averaging all

that the most important parameter in this process is simply: how
many samples adequ represent a given volume of ground? Most software packages
operate with a default “discretisation” which is generally a very small number — for example,
3 by 3 by 3 or 5 by 5 by 1. This question has been discussed in the literature since the mid
1970s (cf. Clark 1976)

The weights for each sample will differ depending on the size, shape and relative orientation
of the block (Figure 8). This approach, sometimes known as ‘“direct kriging”, produces
estimates for block values which should be more reliable than any Inverse Distance weighted
average at the block centre.
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Summary

In summary, variography provides a method i he geological continuity of
mineral values within a given domain iable. The efficiency of
Inverse Distance style weighting methods can b : icantly if combined with

blocks of ground with the added
advantage of an fidence which might be placed on these

estimates.
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