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Abstract  

 

Multivariate geostatistical estimation – “co-kriging” – has been used in practice for well over a 

decade. The technique as developed by Matheron has been documented in many case studies.  

 

There are disadvantages to the standard approach, however, not the least of which is that the 

variables which are measured must be sited at the same geographical location. For example, it is 

necessary that if an exploration project is considering several minerals, they will tend to measure 

all of them on the same samples.  

 

There are cases in which this type of information is not available. Indeed, the motivation for 

using a multivariate approach may be to specifically improve estimation in areas where few 

variables have been measured.  

 

A variation in co-kriging will be presented which does not place this restriction on the modeling 

and estimation processes. A case study will be given which includes the added complication of 

strong trend. Hence the acronym for this new method - Multivariate Universal Co-Kriging.  
 

  



Introduction 

 
The term “co-kriging” appears to have been coined by Matheron himself in his original work, 

The Theory of Regionalized Variables and Its Applications (1971). A review of this original 

approach is useful before starting to generalize.  

 
It is common in geological sampling to measure more than one variable at each sample location. 

For mining purposes, for example, many mineral grades might be measured, plus perhaps the 

width of the lithological unit. In hydrology, one might possibly measure porosity and 

permeability, hydraulic head, grain size, and so on. Some of these variables might be correlated. 

Some of them may not have been measured at all locations. If the value of a variable at an 

unsampled location is to be estimated, the spatial structure (semivariogram) for that variable 

must be established. The sample values may then be used to produce a “kriging” estimator of the 

variable at that location.  

 
Suppose, however, that this variable has been fairly sparsely sampled; it may be more expensive 

to obtain values, or perhaps just very difficult. Suppose, in addition, that this variable is 

significantly correlated with one or more of the other variables that have been measured. 

Matheron studied the question as to whether thew correlated variables could be used to estimate 

the variable of particular interest. He developed the concept of a “cross semivariogram” between 

two variables and, from this structure, a set of kriging equations, which he dubbed “co-kriging.” 

The details of this theory are thoroughly documented by Matheron (1971) and in numerous 

papers, notably those by Guarascio (1976) and Myers (1982, 1983, 1984), so that only those 

points that are relevant to the present discussion need be discussed here.  

 
When Matheron developed co-kriging, he supposed that there would be (effectively) a single 

sampling campaign. Some or all of the variables of interest would be measured at each location. 

The “cross semivariogram” was defined as follows:  

 

 
 

Under the usual intrinsic hypothesis and the assumption of no significant drift, the estimation of 

the value gi at an unsampled location gives rise to a set of co-kriging equations. The solution of 

these equations produces a minimum variance unbiased estimator in the form of a linear 

combination of the neighboring values of both variables. This set of equations can be 

generalized with reasonable ease to the case where a significant drift is present (Myers, 1982). 

 

Although co-kriging does not seem to be in routine use in geological applications, well-

documented case studies illustrate the use of the technique in various situations (cf. Carr and 

McCallister, 1985; and Unal and Haycocks, 1986).  

  



Some problems associated with co-kriging 
 

The theory of co-kriging seems to be well founded. However, it has been noted by various 

authors (Carr et al., 1985) that its application in practice gives rise to some real difficulties. 

These are mostly encountered in the calculation and modelling of the cross semivariogram 

graph. Myers (1982) suggests that difficulties in semivariogram modelling can be reduced by 

using a pseudo-cross semivariogram comprising the sum of the values squared (rather than just 

the difference). This graph is modelled and then “adjusted” by subtracting the single-variable 

semivariogram models and dividing by two.  

 

Myers (1982) states that “it is simpler to utilize cross variograms than to use cross covariances, 

but this is not always possible”. He formulates his approach to co-kriging, therefore, almost 

completely with cross covariance functions and generalizes to the semivariogram function. 

These calculations require stationarity of both mean and variance rather than the less restrictive 

intrinsic hypothesis. He also states that the cross covariance function and the single-variable 

covariance functions must obey the Cauchy-Schwartz inequality in the same way that a normal 

covariance must be less than the product of the two standard deviations. At first sight, this seems 

sensible, but it is difficult to show mathematically other than at the origin of the graph. Myers 

also asserts that the Cauchy-Schwartz inequality should hold between the cross semivariogram 

and the univariate semi-variograms. There is no justification for this statement.  

 

In fact, given the formulation of the traditional cross semivariogram function, there does not 

seem to be any practical reason why it should be nonnegative. If the two variables under 

consideration are inversely correlated at a significant level, then the cross semivariogram 

function would have a stable form but would show negative values for γ(h). This means that we 

have to model a “semi-variance” graph that generally decreases as the distance increases. This 

could lead to some very strange kriging weightings for distant samples. Negative kriging 

variances might also be encountered. If the variables are effectively uncorrelated, the graph will 

oscillate around zero - a very unsatisfactory behavior from the point of view of building a stable 

set of kriging equations.  

 

The problems arising in the usage of the cross semivariogram graph might be due to the original 

formulation of the function, rather than to instabilities in the modelling or the sample 

configuration. The choice of the traditional form follows naturally when the derivation is made 

first for the covariance function and only then generalized to the semivariogram graph. It can 

easily be shown that the above semivariogram definition is obtained by subtracting the cross 

covariance function from the normal statistical covariance at distance zero. The authors propose 

the reverse procedure, deriving the cross semivariogram function from the concept of the single 

variable semivariogram function and the intrinsic hypothesis.  

 

 

An Alternative Formulation 
 

The semivariogram for, e.g. variable g, is usually defined as 

 

 
 

using the same notation as before. This definition is justifiable on many grounds, most of them 

mathematical. Intuitively, this approach may be justified as follows: the ultimate goal is to 



produce an estimate for an unsampled location that will be as close as possible to the actual 

value; the difference between the estimate and the actual value is the “estimation error”; the best 

estimator will be one with the smallest errors – in mathematical terms, mean zero and minimum 

variance. In short, a kriging system seeks to minimize the expected value of the squared errors, 

i.e., the squared difference between the known sampled values and the unknown unsampled 

value. Therefore, it seems only sensible to build a continuity or “predictability” model to 

describe the squared difference between values at different locations.  

 

For variable f the equivalent form is  

 

 
 

It is suggested that the cross semivariogram be defined as  

 

 
 

This formulation follows the intuitive logic described for the ordinary semivariograms. The only 

real difference between the single-variable semivariogram and the two-variable cross 

semivariogram is that the values at different sample locations will be values of different 

variables.  

 

A possible difficulty in the practical application of either type of cross semivariogram will occur 

if the two variables are of widely differing scales. This problem is analogous to that encountered 

in calculating classical covariance between such variables, where precision may be lost due to 

the numerical values being of different orders of magnitude. A suggested solution is to 

“standardize” the individual variables to give each an average of zero and a sill on the univariate 

semivariogram of unity. The situation is further complicated in the presence of trend and is 

suggested as a topic for intensive study at a later date.  

 

The formulation of the cross semivariogram function shown above has some advantages over the 

classical Matheron method. First, and perhaps most important, it cannot become negative. If the 

samples are highly negatively correlated, the graph will rise precipitately rather than fall below 

zero. If the variables are uncorrelated, the differences will show as a constant “nugget effect” – a 

flat horizontal line on the graph. This function, then, may be modelled in the same way as a 

normal single variable semivariogram with no need to introduce intermediate graphs.  

 

It does not appear easy to establish a relationship between this type of cross semivariogram and 

the cross covariance function. The mathematics is not particularly complex, but it involves the 

knowledge of a stationary mean value for each of the two variables. If a covariance exists, i.e., if 

the variables are stationary over the study area, then of course the mean will be stationary. 

However, the construction of the cross semivariogram function does not require that the mean be 

stationary and may, therefore, be more geologically valid.  

Our formulation of the cross semivariogram has been expressed as though there were no 

significant drift or trend over the study area. This is not really a restriction. If there is a 

significant trend, then it must be removed in some way before any of the semivariograms can be 

calculated. In that case, then all semivariograms are calculated as the difference between the 

residual values at each sample location.  

 

 



The major advantage 
 

It might appear that the reformulation of the cross semivariogram function is justified on 

mathematical grounds alone. The removal of the extra step in the modelling is an unexpected but 

welcome bonus. However, it must be said that neither of these features is the main motivation 

for the development of a new approach to cokriging.  

 

To explain the reasons for the current development, the motivation for the original development 

of co-kriging must be examined. The major application for co-kriging over the last two decades 

or so has been to estimate one particular variable that has been undersampled compared to the 

others. For example, it is relatively easy to measure base-metal content in a massive sulfide 

deposit. It is, however, costly and time consuming to measure the specific gravity of every drill-

core section. On the other hand, it is reasonably easy to establish a correlation between metal 

value and specific gravity. Co-kriging is one way in which the density might be estimated more 

accurately without recourse to vastly increased sampling costs. The other major application 

(Myers, 1982) appears to be in estimating linear combinations of various parameters at one time.  

 

There is a fundamental difference between these requirements and those of the program that 

initiated the present research. The study concerned the potentiometric levels within various 

aquifers in a particular study area with a view to ultimately predicting fluid flow and travel path 

parameters. Because of the nature of the sampling available, those boreholes having reliable 

observations of the potentiometric pressure in one aquifer tended to be at different locations 

from the boreholes used to sample another aquifer. The sample data, then, could not be used to 

calculate a semivariogram such as that described in the classical geostatistical literature because 

these require multiple measurements at a significant proportion of the sample locations. 

 

Our reformulation of the cross semivariogram enables all potential pairs of sample values to be 

used, including values at the same location should they be available. This feature is invaluable in 

helping to establish the nugget effect, which must be present in a cross semivariogram. Both a 

more stable shape for the graph (because it is based on more pairs) and a more efficient estimate 

for all parameters required for the model-building stage are obtained. Standard semivariogram 

models may be used without problems, and they have been found to suit all of the cross 

semivariograms encountered so far.  

 

 

Co-kriging  
 

If the proposed form of the semivariogram is acceptable and the underlying intrinsic hypothesis 

that “difference in value” is a function only of distance between sample locations, some kind of 

optimal estimator can be developed. Only the linear estimator with or without significant trend 

win be considered in this paper, i.e., those methods known as “ordinary kriging and universal 

kriging.” These techniques are based on the assumption that a linear combination of the sample 

values provides a sufficient estimator for an unsampled location, and that a good measure of the 

accuracy of this estimator is the variance of the error of estimation thus produced. The kriging 

equations are a direct result of minimizing this estimation variance under the constraint that the 

estimator be unbiased.  

 

Carrying out such a derivation on the basis of the new cross semivariogram model presents little 

difficulty other than that of algebraic complexity. The resulting set of kriging equations are 

identical to those traditionally used for co-kriging. Myers (1982) formulated the co-kriging 



system as a set of matrices that is invaluable for clarifying the situation when all measurements 

are made at all locations. It becomes a little unwieldy when there are a large number of 

“missing” or undersampled variables, because rows and columns must be deleted from each 

matrix. In this situation, where very few of the locations can be assumed to have more than one 

variable measured, the matrix approach is of limited use. The equations have, therefore, been 

expressed in an algebraic notation and then reformulated into matrices for the purposes of 

computer programming.  

 

A brief appendix is attached that provides the algebraic expressions for the co-kriging equations 

when estimating the value of one variable at an unsampled location.  A short discussion is given 

here. 

 

In formulating the layout for the co-kriging equations, the following information is required: 

 

1. The location of the sample (geographical coordinates).  

2. The variable measured at this location.  

3. The value observed for this variable.  

 

It is obvious from the above that if more than one variable has been measured at a single 

location, it should be treated as more than one sample in the data set. The bulk of the co-kriging 

equations then look identical to an ordinary kriging system:  

 

1. The left-hand matrix will contain semivariogram values for all possible combinations of 

sample values.  

2. The right-hand “vector” will contain the semivariogram values between each sample and 

the unsampled location being estimated.  

3. The left-hand “vector” will contain the weighting factors allocated to each sample to 

produce. the optimal estimation of the unknown value. 

 

There are two major differences between this and the usual kriging system of equations. First, 

one must carefully keep track of which variable is measured on each sample so that 

semivariogram values from the correct model will be calculated, whether single-variable or cross 

semivariogram. This presents few problems. Second, one must apply the usual constraints to 

ensure that the estimator remains unbiased. In the ordinary kriging system, the weighting factors 

are constrained to sum to unity, thus ensuring unbiasedness in the absence of trend. This adds 

one equation to the system and one “unknown” to the vector of weighting factors. In universal 

kriging, a constraint is added for each mathematical term in the expression of the trend, so that 

the estimator remains unbiased. If the trend contains six terms, six equations will be added to the 

kriging system and six “unknowns” to the final solution.  

In co-kriging, similar constraints must be used to ensure that the estimator is unbiased.  

 

Considering the case without trend, previous authors (op. cit.) have suggested the following 

conditions:  

 

1. Identify which samples have been measured for the same variable as that being 

estimated. The sum of the weighting factors for these samples must be unity.  

2. For each other variable, identify the samples for which this variable has been measured. 

The sum of the weighting factors for these samples must be zero. This process is repeated 

for each variable encountered in this sample set.  

 



These conditions are extremely restrictive. There is no reason, for example, why the individual 

variables should all have factors summing to zero. If the study area does exhibit stationarity and 

the mean value for each variable could be estimated, the constraints could follow any number of 

different patterns. However, this question is outside the current scope of this paper. In addition, 

adoption of the above constraints leads to some great simplifications when computer 

programming.  

 

In short, then, to ensure that the co-kriging estimator is unbiased, there must be as many 

constraints as there are observed variables in the sample set, or at least in the set being used for 

estimation. In the case where significant trend exists, universal co-kriging constraints must be 

added for each term in the (polynomial) trend that has been identified for each variable. For 

example, if there are three variables with no trend on the first, three terms in the trend for the 

second, and six terms for the third, then 1 + 3 + 6 = 10 equations must be added to the co-kriging 

system. That is, ten extra rows and columns to the left-hand matrix, and ten items to each of the 

right-and left-hand vectors.  

 

Considering ordinary kriging without drift as a special case of universal kriging with one term 

(constant) in the trend, the process of co-kriging might be summarised as follows. A set of 

equations is developed that is remarkably similar to those of single-variable kriging, except that 

the constraints on the weighting factors require the addition of enough equations to cover all of 

the terms in all of the trends for all of the variables being used in the estimation. Otherwise, the 

only noticeable difference is that there are more sample values available in making each 

estimate.  

 

 

Multivariate co-kriging 

 

In his 1982 paper, Myers pointed out that the estimation of one (possibly undersampled) variable 

was not really the prime purpose of co-kriging. When expressed in matrix form, it is clearly seen 

that some or all of the variables may be estimated at the same time without a significant increase 

in computing time or cost. This is simply because the “left-hand matrix” of intersample 

semivariogram values will remain the same no matter which variable is actually being estimated 

at the unsampled location. That is, values can be estimated for all of the variables at a single 

location and the matrix on the left-hand side would be the same.  

The two vectors involved in the co-kriging system will change, of course. The vector on the 

right-hand side contains the semivariograms between each sample and the value at the 

unsampled location. This will obviously change if a different variable is being estimated. The 

variable under estimation will also affect the constraints on the weighting factors. If estimated 

values are required for several variables at the unsampled location, there will be as many right-

hand-side vectors as there are variables. In direct consequence, there will be as many solution 

vectors as there are variables. However, since the left-hand side remains the same, the solution 

for all of the vectors may be carried out simultaneously. The primary implication of this is that 

many variables may be estimated for the cost of one.  

 

Multivariate universal co-kriging  
 

Co-kriging may be used to estimate an inadequately sampled single variable, or it may be used 

to estimate several variables simultaneously. In the latter case, the estimation of each variable is 

improved, in that more information may be used, and the cost is scarcely greater than estimating 

any one of the variables singly. To avoid confusion as to the purpose of this estimation process, 



it is proposed that the term “multivariate” be used to emphasize that more than one variable is 

being estimated.  Because the technique is also applicable in the presence of significant trend, 

the traditional term “universal” should be included; thus the term “multivariate universal co-

kriging” or MUCK, is derived.  

 

In summary, then, a new definition of the semivariogram graph is proposed which meshes 

intuitively with the concept of the original semivariogram in use for single variables. The 

inclusion of this new form results in a system of equations remarkably similar to that obtained 

using the old form. This system of equations is used to obtain “optimal” estimates for all of the 

variables at each unsampled location simultaneously. This approach is referred to as multivariate 

universal co-kriging (MUCK).  

 

 

A Case Study - The Pennsylvanian and Wolfcamp Aquifers  

 
The area of study is a region in the northern portion of Texas in the Panhandle region (Figure 1).  

 

 

 
 

The sample data are potentiometric values from deep brine aquifers called the Pennsylvanian 

and the Wolfcamp, which in some areas are almost 8,000 feet below the ground surface. The 

variable considered in this study is the potentiometric or piezometric level, expressed as the 

elevation (in feet) above sea level of water in a well at that location.  

 

Deaf Smith County in northern Texas is a possible site for a future high-level nuclear waste 

repository. The Pennsylvanian and Wolfcamp aquifers underlie the salt bed, which would be the 

host for such a repository (cf. Bair et al., 1985). The analysis of these aquifers is a vital 



component in the characterization of this site, because a breach of the repository could cause 

hazardous material to be released into the aquifers. One of the requisite parameters in 

determining flow rates and directions is the potentiometric level, because fluids tend to flow 

from areas of higher potentiometric values to those that are lower.  

 

The data used in this report have been collected and culled by the Office of Nuclear Waste 

Isolation’s contractor, Stone & Webster Engineering Corporation (SWEC). Their refinement of 

the original sample data included deleting depressured, local grossly overpressured, and 

underpressured data so that the resulting data base more accurately represented the original flow 

system at steady-state conditions before oil and gas production (Bair et al., 1985). A total of 109 

data values were available for the Pennsylvanian aquifer, whereas the Wolfcamp retained 85 in 

the final data set. It is worth noting, at this point, that the sample locations for the two aquifers 

are quite different.  

 

The first step in any geostatistical analysis is to calculate experimental semivariograms and fit (if 

possible) a valid model to the graph. In the multivariate case, univariate semivariograms must be 

constructed for each aquifer and a cross semivariogram between the two sets of potentiometric 

data.  

 

 

 

Both aquifers exhibit very strong trends, as would be expected with this type of variable. For 

both the Pennsylvanian and the Wolfcamp aquifers, a linear trend was sufficient to describe the 

study area. Experimental semivariograms are calculated on the residuals from these trends. 

Figures 2 and 3 show the calculated semivariogram graphs for the residual data in the two 

aquifers and the models fitted to them. Comparing the model with the data in each case, it can be 

seen that the model tends to be a little higher than one would intuitively expect. This is a 

function of the trend surface fitting, which tends to result in a downward bias in the observed 

variation between sample values. The “true” sill is determined by a cross-validation process 

using universal kriging (UK) on the original data value. This process consists of removing a data 



value from the sample set, estimating the value at that location from the surrounding samples, 

and comparing the estimate with the “true” value. This procedure is repeated for every data 

value. In ideal circumstances, the resulting statistics should average zero and have a standard 

deviation of unity.  

 

The models fitted to these graphs are both simple spherical ones. The Pennsylvanian residuals 

show a range of influence of 50 miles, with a nugget effect of 12,000 ft
2
 and a sill (for the 

spherical component) of 46,000 ft
2
. The Wolfcamp has a slightly longer range at 60 miles, a 

nugget effect of 11,000 ft
2
, and a sill of 34,000 ft

2
.  

 

Because there are only two variables considered in this study, one cross semivariogram needs to 

be constructed. Figure 4 shows the resulting experimental semivariogram when taking the 

difference between the Pennsylvanian and the Wolfcamp data. It should be remembered that the 

data being used in this calculation are the residuals from a linear trend in each case. A model has 

been fitted to the graph. It is spherical with a range of 35 miles, a nugget effect of 15,000 ft
2
 and 

a sill of 28,000 ft
2
. 

 

 

 
 

A cross-validation exercise was carried out using the above models and the multivariate 

universal co-kriging (MUCK) system. In this study, an average of zero and a standard deviation 

of 1.13 were obtained. These figures were considered acceptable for the purposes of this study.  

 

The second stage of the analysis is to produce estimates of unsampled locations for each 

variable. To illustrate this process, a square grid of points has been estimated right across the 

study area. This grid can be used to produce maps for the potentiometric surface of each aquifer. 

Because a kriging technique, a standard error is obtained for each grid point, enabling the 

construction of maps of the “reliability” of the estimation of the potentiometric level.  

 



Figure 5 shows the MUCK-generated map for estimating the potentiometric head values in the 

Pennsylvanian aquifer. This estimation is carried out using both Pennsylvanian and Wolfcamp 

samples, and this is emphasized by the posting of the sample locations, showing intersections in 

the Pennsylvanian as solid circles and those in the Wolfcamp as stars.  

 

For comparison, Figure 6 shows the map estimated by universal kriging using only sample 

values for the Pennsylvanian aquifer. Visual comparison of the two maps shows local variation 

in many of the contours, particularly in those areas where the additional sampling is included by 

the MUCK estimation. This is particularly noticeable in the northeastern Panhandle and the 

central portion of the study area. The contours change very little in those areas where the 

Wolfcamp samples merely augment the existing Pennsylvanian sampling.  

 

 

 

 

Figures 7 and 8 show the corresponding “standard error” maps for Figures 5 and 6, respectively. 

Visual comparison of this pair of maps reinforces the interpretation above. The inclusion of the 

Wolfcamp samples significantly reduces the standard errors in those areas where Pennsylvanian 

samples are scarce.  

 

  



The MUCK system simultaneously produces estimates standard errors for the Wolfcamp aquifer 

while mapping the Pennsylvanian. Figures 9 and 11 show the estimated and standard error maps 

respectively. A separate universal kriging exercise must be undertaken to produce Figures 10 

and 12 for the Wolfcamp alone.  

 

 

Visual inspection of each of these pairs of maps reveals that the incorporation of additional 

sampling, albeit for a different variable, can change the estimation of the potentiometric surface. 

However, this does not provide a quantitative measure of what, if any, advantage has been 

gained by using MUCK rather than the more conventional UK. In theory, MUCK should provide 

smaller standard errors than UK because more information is used in the production of the 

estimates, both in terms of numbers of data and in the additional modelling required for the cross 

semivariogram. If the multivariate approach has significantly improved the errors, the result will 

be a tighter confidence banding around the estimates of the surfaces.  

 

The two methods were compared as follows. The standard error at each of the grid points was 

squared to provide the estimation variance. For each grid point, then, there is a univariate 

universal kriging estimation variance (UKEV) found by UK and a multivariate estimation 

variance found by MUCK. The UKEV is divided by the MUCK estimation variance to produce 

a variance ratio between the two methods. A variance ratio of exactly 1 indicates a location 

where the multivariate approach adds no extra reliability. Any value greater than 1 indicates a 

location where MUCK has improved the estimate.  



Figure 13 shows a contour map of the variance ratio between UK and MUCK for the 

Pennsylvanian data. Both Pennsylvanian and Wolfcamp sample locations are shown on the map 

(circles and stars, respectively) to emphasize the multivariate nature of the MUCK procedure. It 

can be seen that the highest ratios are in locations where the Wolfcamp samples fill gaps left in 

the Pennsylvanian sampling. This map illustrates the reduction in estimation variance achieved 

by including sample data obtained from a different, but significantly correlated, variable. The 

variance ratios range from 1.0 to over 1.8, with an average over the study area of 1.15. A 

simplistic interpretation of this figure would be that the average increase in “efficiency” of the 

estimates is around 15%. Perhaps more accurately, we should take the square root of this figure 

and expect a general decrease in “standard error” of around 7.5%.  

 

 
 

Figure 14 shows the corresponding variance ratio map for the Wolfcamp aquifer. Again, it can 

be seen that “improvement” is most noticeable at those locations where Pennsylvanian samples 

exist in gaps in the sampling pattern. Here, the average variance ratio is 1.09, resulting in 

approximately 4% general improvement in the final confidence levels.  

This case study shows that the estimation of a spatial variable can be enhanced using samples 

from another correlated variable sampled at different locations. It should be remembered that 

any reduction in uncertainty at this stage of estimation of the hydrogeologic variables will carry 

through to any later sensitivity and/or simulation analyses.  

 

 

Summary  
 

It has been suggested that estimation of spatially distributed variables might be improved if cross 

correlations between variables could be included in the estimation process. Traditional co-

kriging has been considered and found to be inapplicable to the problem under study. A new 

formulation of the cross semivariogram is proposed that not only is applicable to this particular 

study, but also avoids many of the problems associated with previous co-kriging methods. 

 

The new cross semivariogram model is used to produce a minimum variance unbiased 

estimation technique that has been dubbed multivariate universal co-kriging, partly to distinguish 

it from traditional co-kriging. The case study for the Texas Panhandle illustrates that MUCK will 

improve estimation to some extent throughout the study area but will have significant impact on 

those areas that have been undersampled for a particular variable.  
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