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Abstract

Multivariate geostatistical estimation — “co-kriging” — has been used in practice for well over a
decade. The technique as developed by Matheron has been documented in many case studies.

There are disadvantages to the standard approach, however, not the least of which is that the
variables which are measured must be sited at the same geographical location. For example, it is
necessary that if an exploration project is considering several minerals, they will tend to measure
all of them on the same samples.

There are cases in which this type of information is not available. Indeed, the motivation for
using a multivariate approach may be to specifically improve estimation in areas where few
variables have been measured.

A variation in co-kriging will be presented which does not place this restriction on the modeling
and estimation processes. A case study will be given which includes the added complication of
strong trend. Hence the acronym for this new method - Multivariate Universal Co-Kriging.



Introduction

The term “co-kriging” appears to have been coined by Matheron himself in his original work,
The Theory of Regionalized Variables and Its Applications (1971). A review of this original
approach is useful before starting to generalize.

It is common in geological sampling to measure more than one variable at each sample location.
For mining purposes, for example, many mineral grades might be measured, plus perhaps the
width of the lithological unit. In hydrology, one might possibly measure porosity and
permeability, hydraulic head, grain size, and so on. Some of these variables might be correlated.
Some of them may not have been measured at all locations. If the value of a variable at an
unsampled location is to be estimated, the spatial structure (semivariogram) for that variable
must be established. The sample values may then be used to produce a “kriging” estimator of the
variable at that location.

Suppose, however, that this variable has been fairly sparsely sampled; it may be more expensive
to obtain values, or perhaps just very difficult. Suppose, in addition, that this variable is
significantly correlated with one or more of the other variables that have been measured.
Matheron studied the question as to whether thew correlated variables could be used to estimate
the variable of particular interest. He developed the concept of a “cross semivariogram” between
two variables and, from this structure, a set of kriging equations, which he dubbed “co-kriging.”
The details of this theory are thoroughly documented by Matheron (1971) and in numerous
papers, notably those by Guarascio (1976) and Myers (1982, 1983, 1984), so that only those
points that are relevant to the present discussion need be discussed here.

When Matheron developed co-kriging, he supposed that there would be (effectively) a single
sampling campaign. Some or all of the variables of interest would be measured at each location.
The “cross semivariogram” was defined as follows:

) = 0.5 El(gi — g) (§ — F)]
where g;, g are the measured values of variable g at locations i and |
where f, t‘j are the measured valves of variable f at locations i and j

and h is the distance between the two samples.

Under the usual intrinsic hypothesis and the assumption of no significant drift, the estimation of
the value gi at an unsampled location gives rise to a set of co-kriging equations. The solution of
these equations produces a minimum variance unbiased estimator in the form of a linear
combination of the neighboring values of both variables. This set of equations can be
generalized with reasonable ease to the case where a significant drift is present (Myers, 1982).

Although co-kriging does not seem to be in routine use in geological applications, well-
documented case studies illustrate the use of the technique in various situations (cf. Carr and
McCallister, 1985; and Unal and Haycocks, 1986).



Some problems associated with co-kriging

The theory of co-kriging seems to be well founded. However, it has been noted by various
authors (Carr et al., 1985) that its application in practice gives rise to some real difficulties.
These are mostly encountered in the calculation and modelling of the cross semivariogram
graph. Myers (1982) suggests that difficulties in semivariogram modelling can be reduced by
using a pseudo-cross semivariogram comprising the sum of the values squared (rather than just
the difference). This graph is modelled and then “adjusted” by subtracting the single-variable
semivariogram models and dividing by two.

Myers (1982) states that “it is simpler to utilize cross variograms than to use cross covariances,
but this is not always possible”. He formulates his approach to co-kriging, therefore, almost
completely with cross covariance functions and generalizes to the semivariogram function.
These calculations require stationarity of both mean and variance rather than the less restrictive
intrinsic hypothesis. He also states that the cross covariance function and the single-variable
covariance functions must obey the Cauchy-Schwartz inequality in the same way that a normal
covariance must be less than the product of the two standard deviations. At first sight, this seems
sensible, but it is difficult to show mathematically other than at the origin of the graph. Myers
also asserts that the Cauchy-Schwartz inequality should hold between the cross semivariogram
and the univariate semi-variograms. There is no justification for this statement.

In fact, given the formulation of the traditional cross semivariogram function, there does not
seem to be any practical reason why it should be nonnegative. If the two variables under
consideration are inversely correlated at a significant level, then the cross semivariogram
function would have a stable form but would show negative values for y(h). This means that we
have to model a “semi-variance” graph that generally decreases as the distance increases. This
could lead to some very strange kriging weightings for distant samples. Negative kriging
variances might also be encountered. If the variables are effectively uncorrelated, the graph will
oscillate around zero - a very unsatisfactory behavior from the point of view of building a stable
set of kriging equations.

The problems arising in the usage of the cross semivariogram graph might be due to the original
formulation of the function, rather than to instabilities in the modelling or the sample
configuration. The choice of the traditional form follows naturally when the derivation is made
first for the covariance function and only then generalized to the semivariogram graph. It can
easily be shown that the above semivariogram definition is obtained by subtracting the cross
covariance function from the normal statistical covariance at distance zero. The authors propose
the reverse procedure, deriving the cross semivariogram function from the concept of the single
variable semivariogram function and the intrinsic hypothesis.

An Alternative Formulation
The semivariogram for, e.g. variable g, is usually defined as
¥elh) = 0.5 Ef(g; — g?]

using the same notation as before. This definition is justifiable on many grounds, most of them
mathematical. Intuitively, this approach may be justified as follows: the ultimate goal is to



produce an estimate for an unsampled location that will be as close as possible to the actual
value; the difference between the estimate and the actual value is the “estimation error”’; the best
estimator will be one with the smallest errors — in mathematical terms, mean zero and minimum
variance. In short, a kriging system seeks to minimize the expected value of the squared errors,
i.e., the squared difference between the known sampled values and the unknown unsampled
value. Therefore, it seems only sensible to build a continuity or “predictability” model to
describe the squared difference between values at different locations.

For variable f the equivalent form is
vdh) = 0.5 E[(f; — 17
It is suggested that the cross semivariogram be defined as
Ter) = 0.5 Ef(g; — 2]

This formulation follows the intuitive logic described for the ordinary semivariograms. The only
real difference between the single-variable semivariogram and the two-variable cross
semivariogram is that the values at different sample locations will be values of different
variables.

A possible difficulty in the practical application of either type of cross semivariogram will occur
if the two variables are of widely differing scales. This problem is analogous to that encountered
in calculating classical covariance between such variables, where precision may be lost due to
the numerical values being of different orders of magnitude. A suggested solution is to
“standardize” the individual variables to give each an average of zero and a sill on the univariate
semivariogram of unity. The situation is further complicated in the presence of trend and is
suggested as a topic for intensive study at a later date.

The formulation of the cross semivariogram function shown above has some advantages over the
classical Matheron method. First, and perhaps most important, it cannot become negative. If the
samples are highly negatively correlated, the graph will rise precipitately rather than fall below
zero. If the variables are uncorrelated, the differences will show as a constant “nugget effect” — a
flat horizontal line on the graph. This function, then, may be modelled in the same way as a
normal single variable semivariogram with no need to introduce intermediate graphs.

It does not appear easy to establish a relationship between this type of cross semivariogram and
the cross covariance function. The mathematics is not particularly complex, but it involves the
knowledge of a stationary mean value for each of the two variables. If a covariance exists, i.e., if
the variables are stationary over the study area, then of course the mean will be stationary.
However, the construction of the cross semivariogram function does not require that the mean be
stationary and may, therefore, be more geologically valid.

Our formulation of the cross semivariogram has been expressed as though there were no
significant drift or trend over the study area. This is not really a restriction. If there is a
significant trend, then it must be removed in some way before any of the semivariograms can be
calculated. In that case, then all semivariograms are calculated as the difference between the
residual values at each sample location.



The major advantage

It might appear that the reformulation of the cross semivariogram function is justified on
mathematical grounds alone. The removal of the extra step in the modelling is an unexpected but
welcome bonus. However, it must be said that neither of these features is the main motivation
for the development of a new approach to cokriging.

To explain the reasons for the current development, the motivation for the original development
of co-kriging must be examined. The major application for co-kriging over the last two decades
or so has been to estimate one particular variable that has been undersampled compared to the
others. For example, it is relatively easy to measure base-metal content in a massive sulfide
deposit. It is, however, costly and time consuming to measure the specific gravity of every drill-
core section. On the other hand, it is reasonably easy to establish a correlation between metal
value and specific gravity. Co-kriging is one way in which the density might be estimated more
accurately without recourse to vastly increased sampling costs. The other major application
(Myers, 1982) appears to be in estimating linear combinations of various parameters at one time.

There is a fundamental difference between these requirements and those of the program that
initiated the present research. The study concerned the potentiometric levels within various
aquifers in a particular study area with a view to ultimately predicting fluid flow and travel path
parameters. Because of the nature of the sampling available, those boreholes having reliable
observations of the potentiometric pressure in one aquifer tended to be at different locations
from the boreholes used to sample another aquifer. The sample data, then, could not be used to
calculate a semivariogram such as that described in the classical geostatistical literature because
these require multiple measurements at a significant proportion of the sample locations.

Our reformulation of the cross semivariogram enables all potential pairs of sample values to be
used, including values at the same location should they be available. This feature is invaluable in
helping to establish the nugget effect, which must be present in a cross semivariogram. Both a
more stable shape for the graph (because it is based on more pairs) and a more efficient estimate
for all parameters required for the model-building stage are obtained. Standard semivariogram
models may be used without problems, and they have been found to suit all of the cross
semivariograms encountered so far.

Co-kriging

If the proposed form of the semivariogram is acceptable and the underlying intrinsic hypothesis
that “difference in value” is a function only of distance between sample locations, some kind of
optimal estimator can be developed. Only the linear estimator with or without significant trend
win be considered in this paper, i.e., those methods known as “ordinary kriging and universal
kriging.” These techniques are based on the assumption that a linear combination of the sample
values provides a sufficient estimator for an unsampled location, and that a good measure of the
accuracy of this estimator is the variance of the error of estimation thus produced. The kriging
equations are a direct result of minimizing this estimation variance under the constraint that the
estimator be unbiased.

Carrying out such a derivation on the basis of the new cross semivariogram model presents little
difficulty other than that of algebraic complexity. The resulting set of kriging equations are
identical to those traditionally used for co-kriging. Myers (1982) formulated the co-kriging



system as a set of matrices that is invaluable for clarifying the situation when all measurements
are made at all locations. It becomes a little unwieldy when there are a large number of
“missing” or undersampled variables, because rows and columns must be deleted from each
matrix. In this situation, where very few of the locations can be assumed to have more than one
variable measured, the matrix approach is of limited use. The equations have, therefore, been
expressed in an algebraic notation and then reformulated into matrices for the purposes of
computer programming.

A brief appendix is attached that provides the algebraic expressions for the co-kriging equations
when estimating the value of one variable at an unsampled location. A short discussion is given
here.

In formulating the layout for the co-kriging equations, the following information is required:

1. The location of the sample (geographical coordinates).
2. The variable measured at this location.
3. The value observed for this variable.

It is obvious from the above that if more than one variable sas been measured at a single
location, it should be treated as more than one sample in the data set. The bulk of the co-kriging
equations then look identical to an ordinary kriging system:

1. The left-hand matrix will contain semivariogram values for all possible combinations of
sample values.

2. The right-hand “vector” will contain the semivariogram values between each sample and
the unsampled location being estimated.

3. The left-hand “vector” will contain the weighting factors allocated to each sample to
produce. the optimal estimation of the unknown value.

There are two major differences between this and the usual kriging system of equations. First,
one must carefully keep track of which variable is measured on each sample so that
semivariogram values from the correct model will be calculated, whether single-variable or cross
semivariogram. This presents few problems. Second, one must apply the usual constraints to
ensure that the estimator remains unbiased. In the ordinary kriging system, the weighting factors
are constrained to sum to unity, thus ensuring unbiasedness in the absence of trend. This adds
one equation to the system and one “unknown” to the vector of weighting factors. In universal
kriging, a constraint is added for each mathematical term in the expression of the trend, so that
the estimator remains unbiased. If the trend contains six terms, six equations will be added to the
kriging system and six “unknowns” to the final solution.

In co-kriging, similar constraints must be used to ensure that the estimator is unbiased.

Considering the case without trend, previous authors (op. cit.) have suggested the following
conditions:

1. Identify which samples have been measured for the same variable as that being
estimated. The sum of the weighting factors for these samples must be unity.

2. For each other variable, identify the samples for which this variable has been measured.
The sum of the weighting factors for these samples must be zero. This process is repeated
for each variable encountered in this sample set.



These conditions are extremely restrictive. There is no reason, for example, why the individual
variables should all have factors summing to zero. If the study area does exhibit stationarity and
the mean value for each variable could be estimated, the constraints could follow any number of
different patterns. However, this question is outside the current scope of this paper. In addition,
adoption of the above constraints leads to some great simplifications when computer
programming.

In short, then, to ensure that the co-kriging estimator is unbiased, there must be as many
constraints as there are observed variables in the sample set, or at least in the set being used for
estimation. In the case where significant trend exists, universal co-kriging constraints must be
added for each term in the (polynomial) trend that has been identified for each variable. For
example, if there are three variables with no trend on the first, three terms in the trend for the
second, and six terms for the third, then 1 + 3 + 6 = 10 equations must be added to the co-kriging
system. That is, ten extra rows and columns to the left-hand matrix, and ten items to each of the
right-and left-hand vectors.

Considering ordinary kriging without drift as a special case of universal kriging with one term
(constant) in the trend, the process of co-kriging might be summarised as follows. A set of
equations is developed that is remarkably similar to those of single-variable kriging, except that
the constraints on the weighting factors require the addition of enough equations to cover all of
the terms in all of the trends for all of the variables being used in the estimation. Otherwise, the
only noticeable difference is that there are more sample values available in making each
estimate.

Multivariate co-kriging

In his 1982 paper, Myers pointed out that the estimation of one (possibly undersampled) variable
was not really the prime purpose of co-kriging. When expressed in matrix form, it is clearly seen
that some or all of the variables may be estimated at the same time without a significant increase
in computing time or cost. This is simply because the “left-hand matrix” of intersample
semivariogram values will remain the same no matter which variable is actually being estimated
at the unsampled location. That is, values can be estimated for all of the variables at a single
location and the matrix on the left-hand side would be the same.

The two vectors involved in the co-kriging system will change, of course. The vector on the
right-hand side contains the semivariograms between each sample and the value at the
unsampled location. This will obviously change if a different variable is being estimated. The
variable under estimation will also affect the constraints on the weighting factors. If estimated
values are required for several variables at the unsampled location, there will be as many right-
hand-side vectors as there are variables. In direct consequence, there will be as many solution
vectors as there are variables. However, since the left-hand side remains the same, the solution
for all of the vectors may be carried out simultaneously. The primary implication of this is that
many variables may be estimated for the cost of one.

Multivariate universal co-Kkriging

Co-kriging may be used to estimate an inadequately sampled single variable, or it may be used
to estimate several variables simultaneously. In the latter case, the estimation of each variable is
improved, in that more information may be used, and the cost is scarcely greater than estimating
any one of the variables singly. To avoid confusion as to the purpose of this estimation process,



it is proposed that the term “multivariate” be used to emphasize that more than one variable is
being estimated. Because the technique is also applicable in the presence of significant trend,
the traditional term “universal” should be included; thus the term “multivariate universal co-
kriging” or MUCK, is derived.

In summary, then, a new definition of the semivariogram graph is proposed which meshes
intuitively with the concept of the original semivariogram in use for single variables. The
inclusion of this new form results in a system of equations remarkably similar to that obtained
using the old form. This system of equations is used to obtain “optimal” estimates for all of the
variables at each unsampled location simultaneously. This approach is referred to as multivariate
universal co-kriging (MUCK).

A Case Study - The Pennsylvanian and Wolfcamp Aquifers

The area of study is a region in the northern portion of Texas in the Panhandle region (Figure 1).

Figure 1. Location map for the geostatistical analysis.

The sample data are potentiometric values from deep brine aquifers called the Pennsylvanian
and the Wolfcamp, which in some areas are almost 8,000 feet below the ground surface. The
variable considered in this study is the potentiometric or piezometric level, expressed as the
elevation (in feet) above sea level of water in a well at that location.

Deaf Smith County in northern Texas is a possible site for a future high-level nuclear waste
repository. The Pennsylvanian and Wolfcamp aquifers underlie the salt bed, which would be the
host for such a repository (cf. Bair et al., 1985). The analysis of these aquifers is a vital



component in the characterization of this site, because a breach of the repository could cause
hazardous material to be released into the aquifers. One of the requisite parameters in
determining flow rates and directions is the potentiometric level, because fluids tend to flow
from areas of higher potentiometric values to those that are lower.

The data used in this report have been collected and culled by the Office of Nuclear Waste
Isolation’s contractor, Stone & Webster Engineering Corporation (SWEC). Their refinement of
the original sample data included deleting depressured, local grossly overpressured, and
underpressured data so that the resulting data base more accurately represented the original flow
system at steady-state conditions before oil and gas production (Bair et al., 1985). A total of 109
data values were available for the Pennsylvanian aquifer, whereas the Wolfcamp retained 85 in
the final data set. It is worth noting, at this point, that the sample locations for the two aquifers
are quite different.

The first step in any geostatistical analysis is to calculate experimental semivariograms and fit (if
possible) a valid model to the graph. In the multivariate case, univariate semivariograms must be
constructed for each aquifer and a cross semivariogram between the two sets of potentiometric
data.
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Figure 2. Semivariogram model for Pennsylvanian data.

Both aquifers exhibit very strong trends, as would be expected with this type of variable. For
both the Pennsylvanian and the Wolfcamp aquifers, a linear trend was sufficient to describe the
study area. Experimental semivariograms are calculated on the residuals from these trends.
Figures 2 and 3 show the calculated semivariogram graphs for the residual data in the two
aquifers and the models fitted to them. Comparing the model with the data in each case, it can be
seen that the model tends to be a little higher than one would intuitively expect. This is a
function of the trend surface fitting, which tends to result in a downward bias in the observed
variation between sample values. The “true” sill is determined by a cross-validation process
using universal kriging (UK)) on the original data value. This process consists of removing a data



value from the sample set, estimating the value at that location from the surrounding samples,
and comparing the estimate with the “true” value. This procedure is repeated for every data
value. In ideal circumstances, the resulting statistics should average zero and have a standard
deviation of unity.

The models fitted to these graphs are both simple spherical ones. The Pennsylvanian residuals
show a range of influence of 50 miles, with a nugget effect of 12,000 ft* and a sill (for the
spherical component) of 46,000 ft*. The Wolfcamp has a slightly longer range at 60 miles, a
nugget effect of 11,000 ft, and a sill of 34,000 ft*.

Because there are only two variables considered in this study, one cross semivariogram needs to
be constructed. Figure 4 shows the resulting experimental semivariogram when taking the
difference between the Pennsylvanian and the Wolfcamp data. It should be remembered that the
data being used in this calculation are the residuals from a linear trend in each case. A model has
been fitted to the graph. It is spherical with a range of 35 miles, a nugget effect of 15,000 ft* and
a sill of 28,000 ft’.

an 1
B o
- 1"
Feo ,°
o
oﬂ
L]
a a
Lr -
o
]
i
|
oob—d>l 1 1 1 | B |
00 250 500 T50 1000 1250 1500 WSO 2000 2250

Distmnce (miles)

Figure 4. Cross variogram for Pennsylvanian and Wolfcamp data.

A cross-validation exercise was carried out using the above models and the multivariate
universal co-kriging (MUCK) system. In this study, an average of zero and a standard deviation
of 1.13 were obtained. These figures were considered acceptable for the purposes of this study.

The second stage of the analysis is to produce estimates of unsampled locations for each
variable. To illustrate this process, a square grid of points has been estimated right across the
study area. This grid can be used to produce maps for the potentiometric surface of each aquifer.
Because a kriging technique, a standard error is obtained for each grid point, enabling the
construction of maps of the “reliability” of the estimation of the potentiometric level.



Figure 5 shows the MUCK-generated map for estimating the potentiometric head values in the
Pennsylvanian aquifer. This estimation is carried out using both Pennsylvanian and Wolfcamp
samples, and this is emphasized by the posting of the sample locations, showing intersections in
the Pennsylvanian as solid circles and those in the Wolfcamp as stars.

For comparison, Figure 6 shows the map estimated by universal kriging using only sample
values for the Pennsylvanian aquifer. Visual comparison of the two maps shows local variation
in many of the contours, particularly in those areas where the additional sampling is included by
the MUCK estimation. This is particularly noticeable in the northeastern Panhandle and the
central portion of the study area. The contours change very little in those areas where the
Wolfcamp samples merely augment the existing Pennsylvanian sampling.
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Figure 7. Co-kriging standard errors for potentiometric level—Pennsylvanian aquifer. Figure 8. Kriging standard errors for potentiometric level—Pennsylvanian aquifer.

Figures 7 and 8 show the corresponding “standard error” maps for Figures 5 and 6, respectively.
Visual comparison of this pair of maps reinforces the interpretation above. The inclusion of the

Wolfcamp samples significantly reduces the standard errors in those areas where Pennsylvanian
samples are scarce.



The MUCK system simultaneously produces estimates standard errors for the Wolfcamp aquifer
while mapping the Pennsylvanian. Figures 9 and 11 show the estimated and standard error maps
respectively. A separate universal kriging exercise must be undertaken to produce Figures 10
and 12 for the Wolfcamp alone.

Figure 9. Co-kriging esti for potenti ric level—Wolfcamp squifer. Figure 10. Kriging estimates for potentiometric level—Wolfcamp aquifer.
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Visual inspection of each of these pairs of maps reveals that the incorporation of additional
sampling, albeit for a different variable, can change the estimation of the potentiometric surface.
However, this does not provide a quantitative measure of what, if any, advantage has been
gained by using MUCK rather than the more conventional UK. In theory, MUCK should provide
smaller standard errors than UK because more information is used in the production of the
estimates, both in terms of numbers of data and in the additional modelling required for the cross
semivariogram. If the multivariate approach has significantly improved the errors, the result will
be a tighter confidence banding around the estimates of the surfaces.

The two methods were compared as follows. The standard error at each of the grid points was
squared to provide the estimation variance. For each grid point, then, there is a univariate
universal kriging estimation variance (UKEV) found by UK and a multivariate estimation
variance found by MUCK. The UKEYV is divided by the MUCK estimation variance to produce
a variance ratio between the two methods. A variance ratio of exactly 1 indicates a location
where the multivariate approach adds no extra reliability. Any value greater than 1 indicates a
location where MUCK has improved the estimate.



Figure 13 shows a contour map of the variance ratio between UK and MUCK for the
Pennsylvanian data. Both Pennsylvanian and Wolfcamp sample locations are shown on the map
(circles and stars, respectively) to emphasize the multivariate nature of the MUCK procedure. It
can be seen that the highest ratios are in locations where the Wolfcamp samples fill gaps left in
the Pennsylvanian sampling. This map illustrates the reduction in estimation variance achieved
by including sample data obtained from a different, but significantly correlated, variable. The
variance ratios range from 1.0 to over 1.8, with an average over the study area of 1.15. A
simplistic interpretation of this figure would be that the average increase in “efficiency” of the
estimates is around 15%. Perhaps more accurately, we should take the square root of this figure
and expect a general decrease in “standard error” of around 7.5%.
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Figure 13. Ratio between kriging and co-krigi i Pennsylvanian aquifer.  Figurc 14. Ratio between kriging and co-kriging Wolfcamp ifer.

Figure 14 shows the corresponding variance ratio map for the Wolfcamp aquifer. Again, it can
be seen that “improvement” is most noticeable at those locations where Pennsylvanian samples
exist in gaps in the sampling pattern. Here, the average variance ratio is 1.09, resulting in
approximately 4% general improvement in the final confidence levels.

This case study shows that the estimation of a spatial variable can be enhanced using samples
from another correlated variable sampled at different locations. It should be remembered that
any reduction in uncertainty at this stage of estimation of the hydrogeologic variables will carry
through to any later sensitivity and/or simulation analyses.

Summary

It has been suggested that estimation of spatially distributed variables might be improved if cross
correlations between variables could be included in the estimation process. Traditional co-
kriging has been considered and found to be inapplicable to the problem under study. A new
formulation of the cross semivariogram is proposed that not only is applicable to this particular
study, but also avoids many of the problems associated with previous co-kriging methods.

The new cross semivariogram model is used to produce a minimum variance unbiased
estimation technique that has been dubbed multivariate universal co-kriging, partly to distinguish
it from traditional co-kriging. The case study for the Texas Panhandle illustrates that MUCK will
improve estimation to some extent throughout the study area but will have significant impact on
those areas that have been undersampled for a particular variable.
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Mathematical Appendix

Ordinary kriging (OK)
To estimate the value, T, at an unsampled location A, we form a linear
estimator:
T+ = [ wg,
where g; is the observed value for sample 5, w, is the weighting factor given to
sample i, and T* denotes an estimate of T.

The error incurred in the estimation may be expressed as (T - T*). It can be
shown that (in the absence of trend):

E[T - T* =0if [ w; = 1
The variance of the estimation errors then becomes
ol = E[T — T*)7]
which, with a little algebraic manipulation, reduces to
@ =2L wiyEa) - L L owiw +(5.8) — v(aA)
where (A, 8 is the semivariogram value between the unsampled location and the
ith sample, and so on.

Minimization of this variance with respect to the weighting factor, w,, and sub-
ject to the unbiasedness constraint results in a system of equations as follows:

Tow v(Si8) + A = y(S,A)fori =123, . .0
ij =1

This is the ordinary kriging system. The use of these weighting factors also results in
a simplification of the estimation variance:

0% = ¥ ow; v(S,A) + 8 — ylAA)
Universal kriging (UK)

The universal kriging system is similar in form, with extra Lagrangian multipli-
ers (A) added for each term in the trend. For example, if a linear trend existed ina
two-dimensional plane this would be expressed as

m(x.}'}=bg+h|ﬁ. +bz}'

Knowledge of the b coefficients is not necessary for the kriging stage, only the form
of the trend. The constraints for unbiasedness then become

E“’j

g Wikj = Xa

1

L Wi = Ya
and Lwv(S.S) + A+ A x + Ay, = (S, A) for i=1,2,3 .. . n
The universal kriging variance simplifies to

o = L Wi v(SiA) + &g + Ay xa + Ay ya — 1{AA)



Multivariate universal co-kriging (MUCK)

We illustrate this approach with a three-variable example. Suppose we wish to
estimate the value of variable g at location A. We have n observations on g available
in the immediate neighborhood. We also have m observations on another variable, T,
and t observations on a third variable, r. We extend the above notation so that (for
example) Sy; denotes the ith sample with a measured value of variable f and A, the
value of variable g at location A.

QOur estimator now becomes

™ =E*£;+E"’,f, +E“t’t
Omne set of constraints resulting in an unbiased estimator (in the absence of trend) is
Lw=1 [y=0 ZDu=0
Of course, if we were estimating the value of variable f at this location, the {w,}

would sum to zero and the {v;} would sum to 1, etc.
The general form of the estimation variance becomes

9 =2 L wi v(SgAp + 2L v 1(S5.Ap + 2 L uy 7(Sa.Ap
= L L wiwy 1(55Sg) = 2L L wivg +(85S0)
— L L v¥q 18480 — 2 £ L wive 118,80
— DL e 754,50 — 2 L L vjur +(55.50 = v (A Ap
Minimization of this variance subject to the unbiasedness constraints gives
L wi 1545 + L ¥ 1(S5.5) + L ux 1(54.5g)
+ Ay = v(SpnAy)
L wi v(54,80) + L v; v(55,5) + L vy 1(54.80)
+ A = y(SgAy)
L wi 755,50 + L v, ¥(55.50 + L i v(Su.500
+ A = y(SwAy
Lw =1
Ly =0
Tu =0
and a simplified co-kriging variance of
Bex = L Wi ASsAg + L v 1(S5A) + L u v(SwAp + N — v(ALAY
With this formulation it is fairly simple to generalize to the universal co-kriging
form, including the trend (if any) for each variable as extra constraints. We find thai
this formulation also highlights terms that remain constant, regardless of which varia

ble is being estimated, and enables us to proceed to the multivariate case with ease.
For matrix formulation of these equations, see Myers (1982).



